Saturday, November 2, 2024

I attribute therefore I am

 

I prefer to make up my own quotes and attribute them to very smart people, so that I can use them to win arguments — Albert Einstein

Arun Kumar

Arun Kumar + AI

Summary: Attribution is a science that seeks to explain an observable phenomenon by something that may be responsible for it. It attempts to do so by dividing the world in two — a world of observable that is being influenced and a world that is the influencer. Attribution gets progressively challenging as the role of probability in shaping the observable increases.

Attribution refers to the process of identifying the factors responsible for an observed phenomenon. Take the example of epidemiology.

In epidemiology, attribution is the process of determining the cause(s) of a health outcome or disease. This involves identifying and quantifying the factors that contribute to the occurrence of a disease or health condition within a population. For example, attributing lung cancer (the observable phenomenon) to smoking (the cause).

In general, a single factor may not be able to explain the totality of the observable. In such cases, the notion of attributable fraction is used to measure the part of the observable phenomenon that can be attributed to various causes.

In another example, the concept of attribution is of significant interest in the context of weather and climate, where it is used to discern the causes of observed climatic variations that include societally and economically devastating extreme events. The approach of attribution in climate science relies on dissecting the totality of the Earth System into an internal component that is being influenced by the external component (the influencer).

For instance, scientists use attribution analysis to assess how much human-induced changes in the atmospheric constituents (e.g., carbon dioxide, ozone etc., treated as an external forcing, the influencer) contribute to the changes in intensity and frequency of extreme weather events like hurricanes, heatwaves, and floods (the phenomenon).

The approach for attribution involves comparing observed data with model simulations that are done with and without the inclusion of human induced changes, thereby isolating the impact of human influence.

The separation of the Earth System between internal and external is arbitrary. One can put variations in Earth’s atmosphere and ocean in the box tagged internal and changes in the atmospheric constituents in the box tagged as external. One can then treat what is in the external box as a known forcing (i.e., not worry about causality of its origin) and attempt to quantify to what extent variations in the internal box are linked to the former.

One can also put Earth’s atmosphere only in the box that is tagged internal and put variations in the ocean and atmospheric constituent in the box tagged external. In this paradigm, the exercise of attribution is an attempt to explain variations in the atmosphere when variations in the ocean and atmospheric constituents both are prescribed.

The boundary between what components in the Earth System get tagged as internal and what get tagged as external is an artificial construct and depends on the question one is posing. The question — What changes in the frequency of climate extremes is due to anthropogenic causes — slices the Earth System into influencer and influencee (which is not a word in in the English lexicon but so what) in one way. Asking the question — what changes in the frequency of climate extremes is due to anthropogenic causes during an El Niño — requires a different strategy for slicing the Earth System.

If you are not a climate scientist, you will think this discussion about climate attribution is not terribly interesting. There are, however, aspects of attribution that transcend the specifics of a single area of interest.

The necessity for the science of attribution stems from the fundamental role of randomness in how the world operates. The future of stocks is uncertain, knowing if it is going to rain two weeks from now starts to resemble flip of a coin. Life is known for throwing curve balls and hence we are advised to “Hope for the best, prepared for the worst, and unsurprised by anything in between.” Without the role of randomness, there would not be a need for the science of attribution.

The very existence of attribution science underscores the significant role of randomness. The greater the effort required to identify causes, the more pronounced the influence of randomness in the system. One could even envision the effort needed to find causality and the role of randomness as complementary variables — similar to Heisenberg’s uncertainty principle — in that their magnitudes are inversely proportional.

On that note would the world not be a boring place if randomness does not have a role in shaping our future? In the absence of randomness and with the ability to understand the causality of it all, we would have missed out constructing superstructures of religious and philosophical traditions. The world would have been a boring monochromatic place.

Humans have an innate desire for certainty and understanding, which stems from our need to predict and control our environment to enhance our success for survival and reproduction. Uncertainty can lead to anxiety, discomfort, and stress, because it challenges our ability to make informed decisions and anticipate future events. This aversion to uncertainty makes the science of attribution particularly attractive and important.

The science of attribution is also synonymous with prediction. If we can attribute an observable phenomenon to an external cause, and if that cause can be anticipated ahead of time, we can predict its consequences. For example, in epidemiology, if we can attribute an outbreak of a disease to a specific pathogen and understand the conditions that lead to its development and spread, and subsequently monitor it, we can predict future outbreaks. This allows public health officials to implement preventive measures, such as vaccinations or quarantine protocols, to mitigate the impact of the disease.

Attribution science also has significant ethical and policy implications. Attributing extreme weather events to climate change can influence public policy, disaster preparedness, societal practices, and international agreements on climate action. It can also affect legal decisions, such as liability for damages caused by climate-related events.

In the grand tapestry of our desire for understanding, attribution serves as the thread that weaves together the intricate patterns of cause and effect, the influencer and the influencee. It attempts to transform the chaos of randomness into a coherent narrative, allowing us to predict, adapt, and thrive. Whether deciphering the mysteries of climate change, unraveling the complexities of disease outbreaks, the science of attribution empowers us to see beyond the surface. It is a testament to our innate curiosity and relentless pursuit of knowledge, bridging the gap between uncertainty and insight. As we continue to refine our tools and expand our understanding, attribution will remain a cornerstone of our quest to make sense of the world and lead us to a better future.

Ciao, and thanks for reading.

Saturday, October 26, 2024

Understanding the Basics of Natural Selection Through Tetris

 The essence of life is statistical improbability on a colossal scale — Richard Dawkins

Arun Kumar

Arun Kumar + AI
Summary: The game of Tetris serves as a simplified analogy for understanding the mechanisms of evolution. Tetris and natural selection bear similarities like randomness, selection, and adaptation.

The Evolutionary Game of Tetris

At some point in your life, you may have played Tetris. If not, then you may have watched someone else playing, sitting next to you while waiting for whatever you two were waiting for. Tetris is a game that, on the surface, seems simple: various shapes, known as Tetriminos, fall from the top of the screen, and the player must rotate and position them to create complete lines, which then disappear. However, beneath this simplicity lies an interesting parallel to the process of evolution by natural selection.

Tetris: A Game of Randomness and Fit

Tetris is a game where random shapes are thrown at the player, and only those that fit into the existing structure are useful. Each falling Tetrimino represents a random guess, and the player’s task is to find the best possible fit for it within the current configuration. The goal is to create complete lines, which can be seen as a metaphor for achieving a stable and functional state.

Natural Selection: The Ultimate Game of Fit

Natural selection operates on a similar principle. In nature, random genetic mutations occur within organisms. These mutations are akin to the random Tetriminos in Tetris. Just as in Tetris, where only the pieces that fit well into the existing structure are beneficial, in natural selection, only the genetic variations that enhance an organism’s fitness (in the backdrop of the current state of the environment) are likely to be passed on to future generations. Over time, this process leads to the evolution of species, with traits that are well-suited to their environments becoming more common.

Commonalities Between Tetris and Natural Selection

  • Randomness: Both Tetris and natural selection involve an element of randomness. In Tetris, the shapes of Tetriminos are random (although selected from a limited pool). In natural selection, genetic mutations also occur randomly.
  • Selection: In both processes, there is a selection mechanism. In Tetris, the player selects the best plays for each shape to fit. In natural selection, the environment “selects” the random mutations that are most advantageous for the survival and reproduction of the organism.

Differences Between Tetris and Natural Selection

  • Agency: In Tetris, the player actively makes decisions about where to place each shape. In natural selection, there is no conscious decision-making; the process is driven by the interplay between environmental pressures and random mutations.
  • Time Scale: Tetris games are fast-paced, with decisions made in seconds. Natural selection operates over much longer time scales, often spanning generations.
  • End Goal: The goal in Tetris is to clear completed lines and achieve a high score. In natural selection, there is no specific end goal; the process is a trajectory of evolution that can go in any direction over time, potentially stopping, bifurcating, or merging.

Conclusion

While Tetris and natural selection operate in vastly different contexts, they share intriguing similarities in their reliance on randomness and selection. Tetris provides a simplified, game-based analogy for the complex and ongoing process of evolution by natural selection.

Ciao, and thanks for reading.

Thursday, October 24, 2024

Which gene I lack

 

There is a joy
that you are able to find,
in the simple act of
searching for beach glass.

Walking along the shore
your eyes lit up,
coming across,
something other than
a seafoam green.

Watching you languorously walk
your steps in sync
with breaking waves,
I wonder,
which gene I lack
to miss your pleasures.

Saturday, October 19, 2024

Science, Engineering, and Evolution

 

Details may vary (and figuring those out is more of an engineering problem) but some basic, or self-evident facts, lead to inevitable outcomes that shape a vast range of downstream consequences.

Arun Kumar

Arun Kumar + AI

Summary: Starting with a couple of basic facts, emrgence of the principle of survival of the fittest is inevitable. The various nuances of how survival of the fittest exactly operates, and has resulted in self-replicating molecules evolving to become complex forms like you and me, however, are still being investigated. Survival of the fittest is a fundamental understanding of the workings of nature; the rest (i.e., the exact trajectory of evolution) are practical solutions that the principle of survival of the fittest, operating within the constraints of the environment, finds.

Consider a car. I have a notion of what a car is. At the mention of the word “car,” the image that comes to mind is a metallic box that sits on four wheels. The box has a certain shape; it is longer than it is wider. On two sides of the box, there are doors that can open and close, allowing me to sit behind a steering wheel to get me from here to there.

Beyond the general notions people have about cars, what is under the hood differs from one car to another. Differences also exist in the details of the exterior. The notion of a car could be thought of as the guiding principle (or the science) of a car, while the details represent engineering.

The understanding of the diversity of forms and phenomena of things in the universe works along the same lines. There are some underlying notions that explain a vast majority of general features among individual objects, while specifics for each differ.

This combination of science and engineering works something like the following: The consequences of some simple, self-evident facts result in guiding principles. These guiding principles may, in fact, be inevitable outcomes of a few self-evident facts and interactions among them. Once there, these principles become powerful tools for understanding a wide range of solutions that can emerge. At a granular level, the specifics of solutions differ (like details differ under the hood of a car), but their fundamental workings can be understood by a few guiding principles.

A specific example will help drive this point home.

Limitation of resources is a basic and self-evident fact. The Sun is the provider of energy on the surface of the Earth. Vast as that energy source may be, it is a resource that is still limited and either has to be shared or competed for.

Now let us assume that, for whatever reason, some nascent forms of biology (e.g., self-replicating molecules) were to emerge on the surface of the Earth. Without worrying about the nuances of what the definition of biology may be, a sensible fact to differentiate it from a rock would be that biology has the innate drive to survive and reproduce, a process that requires energy.

When these two self-evident facts are brought together, the inevitable consequence is the emergence of the principle of survival of the fittest. In the quest to survive and reproduce, the traits that facilitate procuring a bigger share of energy get favored and proliferate in future generations, and the nascent forms of biology evolve along a trajectory.

One can argue about the details as to what the definitions of biology may be, or why traits among the members of a class of biological forms have to differ, but given the facts that (a) resources are constrained, and (b) the prime directive of biology is to survive and reproduce (a process that requires energy), the emergence of the principle of survival of the fittest is an inevitability. Once there, then working in the environment it operates it guides the specifics of evolution.

Following the same argument and guided by the principle of survival of the fittest, since biology also needs to be aware of its environment, senses emerge. Senses are the solutions biology has engineered to know the state of the environment. The exact details depend on the environment that biology is in and what solutions the principle of the survival of the fittest can produce.

To seek energy, biology needs to know where plentiful sources of energy are. To do that, it has to know about its surroundings. It just happens that there are various forms of carriers of information — light, sound, molecules — that permeate the environment and encapsulate some details about its state. If a biology comes to possess a means to sense its surroundings, having that capability will make it better at getting a larger share of energy and in its quest for survival and reproduction.

Starting from a couple of self-evident facts and the inevitability of the principle of survival of the fittest that followed, here I am with a collection of senses that are finely tuned to see, hear, smell, taste, and feel the surroundings in which I exist. Beyond serving their primary purpose, with the evolution of consciousness, these senses now let me also appreciate other pleasures in life.

The subtle beauty of the feat of engineering achieved by the principle of the survival of the fittest is that it does not require a conscious or predetermined design. Sensing the environment in which it operates, it tailors the appropriate solutions.

Ciao, and thanks for reading.